Harmonic multiresolution estimators for denoising and regularization of SPECT-PET data

نویسندگان

  • Elsa D. Angelini
  • Jérôme Kalifa
  • Andrew F. Laine
چکیده

This paper presents a study on the development of new multiresolution directional analysis tools for texture denoising of medical images. Multiresolution texture analysis is performed with wavelet packets and brushlet expansions to exploit spatio-temporal coherence and identify persistent anatomical structures while removing uncorrelated noise components. Denoising is performed via thresholding estimators in the transform domain. Denoising performance is evaluated quantitatively on phantom volumes and qualitatively on clinical data sets with SPECT-PET data. We show in this study that these multiresolution directional analysis tools are well adapted to the intrinsic nature of textured data and outperform traditional denoising methods. In the case of spatiotemporal data, we also show that by incorporating the time dimension directly in the analysis, we can bring into play temporal coherence between successive frames to improve denoising performance and enhance moving boundaries and structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

De-noising SPECT/PET Images Using Cross-Scale Regularization

De-noising of SPECT and PET images is a challenging task due to the inherent low signal-to-noise ratio of acquired data. Wavelet based multiscale denoising methods typically apply thresholding operators on sub-band coefficients to eliminate noise components in spatial-frequency space prior to reconstruction. In the case of high noise levels, detailed scales of sub-band images are usually domina...

متن کامل

Locally adaptive image denoising by a statistical multiresolution criterion

We demonstrate how one can choose the smoothing parameter in image denoising by a statistical multiresolution criterion, both globally and locally. Using inhomogeneous diffusion and total variation regularization as examples for localized regularization schemes, we present an efficient method for locally adaptive image denoising. As expected, the smoothing parameter serves as an edge detector i...

متن کامل

Analytical propagation of errors in dynamic SPECT: estimators, degrading factors, bias and noise.

Dynamic SPECT is a relatively new technique that may potentially benefit many imaging applications. Though similar to dynamic PET, the accuracy and precision of dynamic SPECT parameter estimates are degraded by factors that differ from those encountered in PET. In this work we formulate a methodology for analytically studying the propagation of errors from dynamic projection data to kinetic par...

متن کامل

A Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation

In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...

متن کامل

Platelet-based MPLE algorithm for denoising of SPECT images: phantom and patient study

Introduction: In this study the evaluation of a Platelet-based Maximum Penalized Likelihood Estimation (MPLE) for denoising SPECT images was performed and compared with other denoising methods such as Wavelets or Butterworth filtration. Platelet-based MPLE factorization as a multiscale decomposition approach has been already proposed for better edges and surfaces representation due to Poi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002